

API Security Testing

Mike Morin

April 2025

Table of Contents

Executive Summary...3
Environment Setup..3
API Security Assessment Tasks.. 4
Testing for OWASP API Security Top 10 Vulnerabilities:...5
Conclusion... 10

Executive Summary

This project consisted of a focused security testing assessment on Payatu’s Damn
Vulnerable API (DVAPI) to identify weaknesses aligned with the OWASP Top 10 API
Security Risk. Using Postman, I performed systematic endpoint discovery, analyzed
request and response patterns, and mapped the API’s functional behavior. I then used
Burp Suite to intercept and manipulate traffic, perform active tests, and replicate
common attack techniques used against modern APIs.
The security testing process revealed several vulnerabilities, including issues related to
authentication, authorization, and data exposure. All findings were validated through
practical attack simulations and documented strictly based on observable behavior,
without providing remediation steps. This project strengthened my hands-on skills in API
vulnerability discovery, request manipulation, and structured security testing
methodology.

Environment Setup

Installation and configuration of the Damn Vulnerable API (DVAPI) in an isolated lab
environment.

Postman installation for API interaction and testing.

https://payatu.com/dvapi/
https://payatu.com/dvapi/

API Security Assessment Tasks

Endpoint Discovery

​

Endpoint Method parameter

http://localhost:3000/api/register POST username, password

http://localhost:3000/api/login POST username, password

http://localhost:3000/api/profile GET N/A

http://localhost:3000/api/profile POST current_passwor, password,
confirm_password

http://localhost:3000/api/profile/upload POST file

http://localhost:3000/api/user/<user> GET username

http://localhost:3000/api/logout GET N/A

http://localhost:3000/api/addNoteWithLink POST url

http://localhost:3000/api/addNote POST note

http://localhost:3000/api/getNote?userName=<u
ser>

GET username

http://localhost:3000/api/flag/submit POST challengeNo, flag

http://localhost:3000/api/allChalanges POST released

http://localhost:3000/api/getSolves GET N/A

http://localhost:3000/api/scores GET N/A

http://localhost:3000/api/addTicket POST message

http://localhost:3000/api/getTicket POST ticketno

Testing for OWASP API Security Top 10 Vulnerabilities:

Broken Object Level Authorization (BOLA):​
Broken Object Level Authorization (BOLA) is a security vulnerability where an application does
not properly enforce authorization checks at the object level, leading to unauthorized access to
sensitive data or actions.​
Upon reviewing the API documentation, we identified two noteworthy endpoints: one that
retrieves a list of all users along with their scores, and another that might be vulnerable to
Broken Object Level Authorization. (BOLA).​
1- http://localhost:3000/api/scores: This endpoint allows a registered user to view the scores of
all other competing users.​

​
2- http://localhost:3000/api/getNote?username=user: This endpoint allows a user to read their
own secret note, which is intended to be accessible only by the creator. We use Burp Suite to
modify the endpoint's parameter to determine if it is vulnerable to Broken Object Level
Authorization (BOLA).​
​

The secret notes of other users are accessible without proper authorization, and notably, we
were able to retrieve the flag from the admin's note.

Excessive Data Exposure​
This vulnerability refers to a situation where an API exposes more information than is necessary
or intended, potentially leading to security vulnerabilities and privacy concerns. ​
We attempted to modify the API authentication token by altering the “isAdmin” field from false to
true. After importing the token into the API in an effort to escalate privileges. The API responded
with error messages, revealing some confidential information that should not have been
disclosed.

Broken User Authentication And Injection Flaws​
Broken User Authentication is a vulnerability where attackers can exploit flaws in the
authentication process to impersonate other users, including administrators. This typically
occurs due to weak, poorly implemented, or improperly enforced authentication mechanisms.

The causes of broken user authentication typically involve weak password policies, absence of
multi-factor authentication (MFA), lack of rate limiting on login attempts, insecure password
recovery mechanisms, and poor session management practices, which can all contribute to the
ease with which attackers compromise user accounts. Additionally, improper implementation of
protocols like JWT or OAuth, failure to implement account lockout mechanisms, and SQL
injection vulnerabilities are significant risks. SQL injection can allow attackers to bypass
authentication entirely by injecting malicious SQL code into login fields, leading to unauthorized
access and exposing sensitive data.​
We attempted multiple methods to bypass the authentication process, including token alteration
and brute-force password attacks, but none were successful. Knowing that the API uses
MongoDB, a NoSQL database, we explored the possibility of a NoSQL injection. We employed
the username “admin” combined with the “$ne” operator, which stands for “not equal.” This
operator filters results based on the condition that the specified field should not match a given
value. By using the payload { "username": "admin", "password": { "$ne": null } }, we successfully
bypassed the authentication mechanism.

Broken Function Level Authorization (Broken Access Control)​
Broken Function Level Authorization refers to a security vulnerability where an application does
not properly enforce permissions at the function or endpoint level. This allows users to access
functionalities they should not have permission to use, potentially exposing sensitive data or
allowing unauthorized actions.​
We utilized the OPTIONS method to identify the communication options available for the

resources and compared the results with the documentation. We observed that the endpoint
http://localhost:3000/api/user/<username> allows the DELETE method, which is not mentioned
in the documentation. Upon investigating this method, we discovered that a user can delete
another user's account without the necessary permissions.

Improper Assets Management​
Improper Inventory Management refers to vulnerabilities arising from poorly managed API
endpoints, such as exposing undocumented or internal APIs without proper access controls,
which leads to increased attack surfaces and unauthorized access. This can result in attackers
discovering and exploiting hidden functionalities, gaining access to sensitive data, or performing

unauthorized actions.​
The endpoint http://localhost:30000/allChallenges is intended to return all available challenges,
with a parameter {released: 1} indicating which challenges to include. We tested this endpoint
for improper inventory management by modifying the released parameter to values such as 0,
2, and null, and also tried different API versions like v1, v2, staging, production, and prod, but
none of these worked. Finally, we replaced allChallenges with challenges, and although it did
not return the expected results, the response contained valuable information. The URL provided
HTML and JavaScript code used to display the challenges, revealing that the developer had
commented out an unreleased parameter intended to be removed in production, which had
unfortunately not been done.

Conclusion

This project involved hands-on security testing of Payatu’s Damn Vulnerable API (DVAPI) to
identify weaknesses aligned with the OWASP Top 10 API Security Risk. Using Postman for
structured endpoint enumeration and Burp Suite for traffic interception and active testing, I was
able to uncover several critical vulnerabilities, including Broken Object Level Authorization
(BOLA), Excessive Data Exposure, Broken User Authentication, Injection Flaws, Broken
Function Level Authorization, and Improper Asset Management. These findings demonstrate
the range of potential security risks present in modern API implementations.

The assessment strengthened my practical skills in API security testing, including
reconnaissance, vulnerability validation, and attack simulation. It also highlighted the importance
of carefully managing authentication, authorization, and data exposure in API design. Overall,
the project reinforces the need for continuous security testing to proactively identify and
understand potential risks in API-driven applications.

	Executive Summary
	Environment Setup
	API Security Assessment Tasks
	Testing for OWASP API Security Top 10 Vulnerabilities:
	Conclusion

